When there is one source and one sink and prospect is that to send maximum unit to sink then comes the need of maxflow.It is normally a bfs which helps to find the maximum capacity over the line load and reduce this capacity from load until the load comes to zero.I mean until there is any path from source to sink.
Here is the code for maxflow.Hope it help.
Here is the code for maxflow.Hope it help.
#include<cstdio> #include<cmath> #include<cstring> #include<string> #include<iostream> #include<queue> #include<algorithm> using namespace std; #define INF 2147483647 /***************** Max Flow Algorithm*************** ****************************************************/ const int maxINDX=102; int flow[maxINDX][maxINDX],cap[maxINDX][maxINDX]; int path[maxINDX]; int src,dest; int BFS(int node) { int i,item,cf; queue<int> q; for(i=1;i<=node;i++) path[i]=-2;// color it q.push(src); path[src]=-1; while(!q.empty()) { item=q.front(); q.pop(); if(item==dest) { i=dest; cf=INF; while(path[i]!=-1) { if(cf>flow[path[i]][i]) cf=flow[path[i]][i]; i=path[i]; } return cf; } for(i=1;i<=node;i++) { if(flow[item][i]!=0 && path[i]==-2) { q.push(i); path[i]=item; } } } // end of while loop return 0; } int maxflow(int node) { int i,j,cf,totalflow=0; while((cf=BFS(node))!=0) { totalflow+=cf; i=dest; while(path[i]!=-1) { flow[path[i]][i]-=cf; flow[i][path[i]]+=cf; i=path[i]; cout <<i<<" ->"; // for available pathS } cout << endl; } return totalflow; } void graph_initial(int node){ int i,j; for(i=1;i<=node;i++){ for(j=1;j<=node;j++) { cap[i][j]=0; flow[i][j]=0; } } } int main() { int node,edge,a,b,c,i,resultedFlow,j; while(scanf("%d",&node)==1 && node!=0) { graph_initial(node); scanf("%d %d",&src,&dest); scanf("%d",&edge); for(i=1;i<=edge;i++) { scanf("%d %d %d",&a,&b,&c); cap[a][b]+=c; cap[b][a]+=c; flow[a][b]+=c; flow[b][a]+=c; // For BI-Directed Graph } resultedFlow=maxflow(node); printf("%d\n",resultedFlow); /* for(i=1;i<=node;i++) for(j=1;j<=node;j++) cout << i<<","<<j<<":"<<flow[i][j] <<" "<<i<<":"<<path[i]<<endl;*/ } return 0; } /* 7 1 7 8 1 2 3 2 4 3 3 4 5 1 3 1 4 7 2 3 5 4 5 6 2 6 7 3 */
No comments:
Post a Comment